An Efficient Linear Solver for Nonlinear Parameter Identification Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Linear Solver for Nonlinear Parameter Identification Problems

In this paper, we study some efficient numerical methods for parameter identifications in elliptic systems. The proposed numerical methods are conducted iteratively and each iteration involves only solving positive definite linear algebraic systems, although the original inverse problems are ill-posed and highly nonlinear. The positive definite systems can be naturally preconditioned with their...

متن کامل

An Eecient Linear Solver for Nonlinear Parameter Identiication Problems

In this paper, we study some eecient numerical methods for parameter identiications in elliptic systems. The proposed numerical methods are conducted iteratively and each iteration involves only solving positive deenite linear algebraic systems, though the original inverse problems are ill-posed and highly nonlinear. The positive deenite systems can be naturally preconditioned with their corres...

متن کامل

Parameter Identification for Nonlinear Ill-posed Problems

Since the classical iterative methods for solving nonlinear ill-posed problems are locally convergent, this paper constructs a robust and widely convergent method for identifying parameter based on homotopy algorithm, and investigates this method’s convergence in the light of Lyapunov theory. Furthermore, we consider 1-D elliptic type equation to testify that the homotopy regularization can ide...

متن کامل

An optimal analytical method for nonlinear boundary value problems based on method of variation of parameter

In this paper, the authors present a modified convergent analytic algorithm for the solution of nonlinear boundary value problems by means of a variable parameter method and briefly, the method is called optimal variable parameter method. This method, based on the embedding of a parameter and an auxiliary operator, provides a computational advantage for the convergence of the approximate soluti...

متن کامل

An Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems

‎By p-power (or partial p-power) transformation‎, ‎the Lagrangian function in nonconvex optimization problem becomes locally convex‎. ‎In this paper‎, ‎we present a neural network based on an NCP function for solving the nonconvex optimization problem‎. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2001

ISSN: 1064-8275,1095-7197

DOI: 10.1137/s1064827598346740